A study of (3+1)-dimensional generalized Korteweg-de Vries- Zakharov-Kuznetsov equation via Lie symmetry approach
نویسندگان
چکیده
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملLie Symmetry Analysis and Exact Solutions of General Time Fractional Fifth-order Korteweg-de Vries Equation
In this paper, using the Lie group analysis method, we study the invariance properties of the general time fractional fifth-order Korteweg-de Vries (KdV) equation. A systematic research to derive Lie point symmetries of the equation is performed. In the sense of point symmetry, all of the geometric vector fields and the symmetry reductions of the equation are obtained, the exact power series so...
متن کاملSymmetry properties of a generalized Korteweg-de Vries equation and some explicit solutions
The symmetry group method is applied to a generalized Korteweg-de Vries equation and several classes of group invariant solutions for it are obtained by means of this technique. Polynomial, trigonometric, and elliptic function solutions can be calculated. It is shown that this generalized equation can be reduced to a first-order equation under a particular second-order differential constraint w...
متن کاملGlobal Well-posedness for Periodic Generalized Korteweg-de Vries Equation
In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.
متن کاملThe Generalized Korteweg-de Vries Equation on the Half Line
The initial-boundary value problem for the generalized Korteweg-de Vries equation on a half-line is studied by adapting the initial value techniques developed by Kenig, Ponce and Vega and Bourgain to the initial-boundary setting. The approach consists of replacing the initial-boundary problem by a forced initial value problem. The forcing is selected to satisfy the boundary condition by inverti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Physics
سال: 2020
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2020.103197